CrIS Calibration Reference Uncertainty (ICT vs. ECT)

Joe Predina Richard Hertel

Logistikos Engineering LLC, Fort Wayne, IN

STAR JPSS Science Team Annual Meeting Session 6c: ATMS/CrIS Breakout August 24-28, 2015 College Park, MD

Acknowledgements

- The authors would like to acknowledge the following Harris Engineers for their contribution in TVAC data analysis and CrIS selloff documentation related to the topic of this presentation
 - Steven Wells
 - Jeff Garr
 - Rebecca Malloy (Frain)
 - Lawrence Suwinski

Improved Internal Calibration Target (ICT) Is Deployed on CrIS J1 Instrument

Specular 3-bounce trap blackbody design

Largely immune to stray light from surrounding environment

Instrument sees radiance from ICT plus a very dim reflected image (<0.5%) of itself

which is accounted for in SDR radiance modeling

ICT temperature uncertainty much lower

J1 Instrument ICT Emissivity Significantly Improved Over NPP Instrument

Better ICT Stray Light Rejection Results in Elimination of Numerous Reflected Error Sources

Benefits

- 45° ICT cavity angle causes off-axis stray light entering ICT to leave ICT off-axis
- More accurate calibration performance because many sources of radiance uncertainty have been eliminated
- Simplified SDR processing

Four Error Categories Contribute to CrIS J1 ICT Radiometric Error

39 mK ICT Temperature Uncertainty Dominates (WC EOL)

% Uncertainty Relative to a 287 K Black Body Radiance

ICT Radiance Uncertainty				
Band	EOL	BOL		
LWIR	0.121%	0.083%		
MWIR	0.158%	0.121%		
SWIR	0.217%	0.177%		
•				

RSS

39 mK (1 sigma)
RSS Temperature Error
Dominates ICT
Radiometric Uncertainty

Radiance Uncertainty Due to Diffuse ICT Reflections

Band	EOL	BOL
LWIR	0.01%	0.01%
MWIR	0.03%	0.03%
SWIR	0.04%	0.04%

Radiance Uncertainty due to Emissivity Knowledge

Band EOL BOL

Band	EOL	BOL
LWIR	0.05%	0.03%
MWIR	0.04%	0.02%
SWIR	0.05%	0.03%

Radiance Uncertainty Due to ICT Temperature Error

Band	EOL	BOL
LWIR	0.07%	0.07%
MWIR	0.12%	0.12%
SWIR	0.17%	0.17%

Radiance Uncertainty Due to
Unmodeled ICT External
Environment

Band EOL BOL
LWIR 0.08% 0.02%

MWIR 0.09% 0.01%

- EOL contamination (CL 450)
- ICT external environment temperature difference (4.5 K)
- Includes effect of SDR environmental model correction
- Specular emissivity uncertainty
 - NIST coupon characterization
 - Emissivity uniformity (FOV)
 - · Target vignetting
 - EOL contamination (CL 450)
 - EOL paint aging

- PRT calibration 17.5 mK
- Electronic readout 12.5 mK
- PRT electrical bias error 11 mK
- Temperature gradients
 - Lateral FOV to FOV) 12 mK
 - Axial (paint worst case) 28 mK
- Other 3 mK

Unmodeled reflection from CrIS instrument

0.11%

Beamsplitter emission

0.01%

- Aft optics emission
- FTS mirror emission
- **EOL contamination (CL 450)**

SWIR

CrIS Internal Calibration Target (ICT) Remains the Dominant Source of Radiometric Uncertainty

CrIS J1 Radiometric Uncertainty (k=1)

Same Holds True for Mission Worst Case End-of-Life (EOL)

(Only a modest Degradation estimated from BOL to EOL)

CrIS J1 ICT Radiometric Performance Is Climate Trending Class. How Can This Be Validated During TVAC?

- CrIS ICT Radiometric Performance Expected
 - >0.9995 emissivity (specular)
 - 39 mK (1 sigma) temperature uncertainty predicted (worst season on-orbit)
 - 24 mK (1 sigma) temperature uncertainty predicted (during TVAC)

External Calibration Target (ECT) & Space Calibration Target (SCT) Used to Verify Radiometric Performance During TVAC

Test Configuration Inside TVAC Chamber

External Calibration Target (ECT) Role in CrIS Testing

- ECT Is Essential in Four Instrument Tests
 - NEdN characterization
 - Validation of radiometric responsivity vs. wave number
 - Validation of long term (30 day) radiometric stability
 - Radiance source for radiometric linearity characterization
- ECT <u>NOT</u> Used to "Calibrate" CrIS.....ECT used only for validation
 - CrIS radiometric calibration is derived only from ICT
 - NIST traceable temperature calibration is via...
 - ICT PRTs with NIST-traceable temperature calibration
 - Two precision NIST traceable resistors used to compare with each PRT's temperature dependent resistance
 - Algorithm using PRT-specific coefficients & pre-launch precision resistor values
 - Long term PRT & precision resistor stability built into CrIS

ECT Is a Full Aperture 5 Bounce Specular Target

(non-uniform temperature is primary limitation)

- ECT Characteristics TVAC Testing (as originally designed)
 - >0.9995 emissivity (specular)
 - Temperature uncertainty
 - 100 mK (1 sigma) (design requirement)
 - 70 mK (1 sigma) analysis

- Issues During TVAC
 - Temperature readout error high as 150 mK at start of TVAC due to electronic instrumentation issues
 - ECT was 12 years old......so were most of the PRT calibrations
 - Large thermal gradients present within ECT
 - Caused by LN₂ cooled heat sink combined with high power heaters used for thermal set point control
 - Up to 500 mK temperature gradient through thickness of ECT primary target plate
 - Up to 400 mK temperature gradient along length of ECT primary target plate

Cross Section of ECT

Purpose of ECT Calibration Enhancement Is to Reduce ECT Radiometric Uncertainty

Objective

- Determine the temperature bias of all ECT PRTs relative to the R2 PRT primary temperature reference
- Anchor all ECT PRT temperature calibrations to the 8 monitor PRTs mounted on the ECT primary wedge plate surface that were calibrated against multiple NIST references in 2012
- Characterize and remove electronic readout error of ECT PRTs
- Use results to calculate a more accurate ECT radiance for TVAC acceptance testing

Method

- Perform multiple isothermal ECT tests that can be used to determine relative PRT temperature offsets under a uniform temperature condition
- Use a high precision readout meter for at least one of the isothermal tests so that relative bias errors can be fully attributed to aged PRT calibration coefficients
- Use isothermal test with high precision electronic readout to anchor PRT R1 & R2
 reported temperatures to the family of 8 monitor PRTs mounted on ECT wedge plate
- Use 10 ohm, 25 ohm and 100 ohm precision NIST traceable resistor references to calibrate meters used during TVAC testing

Eight Externally Mounted PRTs with 9 mK NIST Traceable Uncertainty Were Used to Re-establish Temperature Calibration

- R1 & R2 PRT are primary temperature sensors
- S1 through S8 PRTs used for calibration enhancement under isothermal conditions

ICT & ECT Temperatures Matched within 34 mK During TVAC Isothermal ECT Test Conducted at Mission Nominal

Thermal Gradients Were Still Present on ECT During Normal TVAC Testing

MN 200K ECT Plateau

MN 233K ECT Plateau

MN 260K ECT Plateau

MW Brightness temperatures are used for the 260K pleateau. Due to the use of the MW band FOV 9 is excluded.

■ Side 2 - Brightness Temp

Side 1 - R1 & R2 Temp

─■ Side 2 - R1 & R2 Temp

Side 1 - Monitoring PRTs

── Side 2 - Monitoring PRTs

MN 287K ECT Plateau

MN 310K ECT Plateau

Substantially Improved ECT Design for Future J2 TVAC Testing Believed Possible & Would Be Beneficial

(1 of 3)

- Desired Objectives
 - Temperature uncertainty knowledge........... 30 mK (1 sigma)....NIST traceable
 - ECT portion of budget......28 mK
 - Electronic readout portion of budget......10 mK
 - Maximum temperature gradient (primary plate) 45 mK
- Promising Concept Under Investigation at Harris for J2 TVAC
 - LN₂ cooling replaced by variable temperature circulator
 - ECT cavity is directly liquid cooled near ECT input aperture......does not rely on radiative cooling
 - Regulate temperature slightly above liquid cooled heat sink temperature using <u>low power</u> heaters

TVAC ECT Instrumentation Was Augmented By Analysis to Provide Meaningful Validation of CrIS Radiometric Calibration

(2 of 3)

- ECT Performance Enhancements for Radiometric Calibration
 - PRT electronic readout errors eliminated using NIST traceable calibration resistor references
 - Primary ECT temperature sensor (R1 & R2) calibration re-establish using eight NIST traceable PRT references (9 mK uncertainty) during an ECT isothermal test
 - Three ECT isothermal tests spanning CrIS J1 TVAC performed to demonstrate ECT temperature knowledge stability (R1 & R2) with only a 26 mK discrepancy noted

ECT & ICT temperature calibration match to within 34 mK

TVAC ECT Instrumentation Is Augmented By Analysis to Provide Meaningful Validation of CrIS Radiometric Calibration

(3 of 3)

- ECT Thermal Gradients Removed Analytically in TVAC Data Analysis
 - NIST Transfer Radiometer (TXR) verified ECT thermal gradients match brightness temperatures reported by CrIS in all FOVs (299 K test result)
 - CrIS SWIR & MWIR linear detectors used to map ECT surface temperature gradients when collecting data at each ECT set point temperature (200 K, 233 K, 265 K, 287 K, 299 K & 310 K)
 - Correct ECT reported temperature by FOV for radiometric analysis

• LWIR & MWIR linearity testing can use ECT source with enhanced surface temperature knowledge that accurately accounts for thermal gradients

Radiometric Uncertainty Relative to NEdT Performance

CrIS J1 Radiometric Uncertainty (k = 3) for 287 K Scene

CrIS J1 Radiometric Uncertainty with Respect to a Black Body Spectrum

EOL Nominal k = 3, T = 287 K

-Specification k = 3, T = 287 K

Radiometric Uncertainty Gain Factors

Changes in DA Bias Tilt Over 4 Minutes Changes in Optical Flatness Over 4 Minutes Polarization Change ICT to Scene As Built ICT Radiance Knowledge As Built ICT Radiance Knowledge - BOL Non-Linearity Non-Linearity (MN) Electronic Delay Drift Over 4 Minutes

Detector Temperature Changes Over 4 Minutes

Electronic Gain Drift Over 4 Minutes Changes in Channel Spectra Over 4 Minutes OPD Sampling Rate Drift Over 4 Minutes

Other Small Effects

Radiometric Uncertainty Offset Factors

Polarization Effects (Offset) Optics Temperature Changes Over 4 Minutes FOV-to-FOV Electrical Crosstalk in Same Band FOV-to-FOV Crosstalk Between Bands FOV-to-FOV Crosstalk Between Bands (MN) Solar Scattering JPSS Orbit

Modified (1) CrIS J1 Radiometric Unc & Long Term Stability Roll-Ups (EOL & BOL) - 081715 rjh v12.xlsx

Typical CrIS Noise Temperature Plots

(from Suomi NPP J1 CrIS Is Similar)

Equivalent Noise Temperature at Four Scene Temperatures

CrIS J1 Radiometric Temperature Uncertainty Estimates (k = 3) for Various ECT Black Body Scene Temperatures

CrIS Noise Performance (NEdT, k=1) Is Small Compared to the Radiometric Uncertainty Equivalent Temperature Error (k=3)

Modified (1) CrIS J1 Radiometric Unc & Long Term Stability Roll-Ups (EOL & BOL) - 081715 rjh v12.xlsx

